1. Recall the definition of modules and submodules over a ring R. Consider the vector space $V=\mathbb{C}^{n}$ of column vectors as a module over the ring $M_{n}(\mathbb{C})$ of n by n matrices. Show that the only submodules of V are $\{0\}$ and V. (A module with this property is called a simple module; such modules are the central object of study of this course.)
2. Recall the definition of minimal polynomial of a linear transformation. We denote by $G L(n, K)$ the group of invertible n by n matrices over a field K (with product rule being the usual multiplication of matrices).
(a) Suppose $g \in G L(n, \mathbb{C})$ has finite order. Show that g is diagonalizable.
(b) Suppose g is an element of finite order in $G L(n, K)$ where K has characteristic p. Must g be diagonalizable in that case? Show that if $n<p$ then g cannot have order p^{2}.
3. (a) Let G be a finite group. Show that there exists $n \in \mathbb{N}$ such that G is isomorphic to a subgroup of $G L(n, \mathbb{R})$.
(b) [harder] Can you find a finite group H which cannot be isomorphic to a subgroup of $G L(2, \mathbb{C})$?
